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ABSTRACT
The traditional functional formulation of quick-sort is simple and

elegant. But is it fast? Through a dialog, we observe that this tra-

ditional formulation does not retain certain crucial properties of

the imperative version. We include a known derivation of a higher

performing functional implementation together with a graph that

illustrates the differences. Our pet peeve is that the faster quick-sort

is frequently left out of texts on functional programming.
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1 INTRODUCTION
We sat in the classroom waiting. The professor came in and stopped

suddenly. He was staring at the board with a scowl. We looked too

and noticed the following code [9, 13].

quicksort :: Ord α ⇒ [α]→ [α]
quicksort [] = []

quicksort (p : xs ) = quicksort[y | y ∈ xs,y ≤ p] ++
[p] ++

quicksort[y | y ∈ xs,y > p]

“If I see quick-sort in Haskell one more time, I’m going to be

sick!” he declared.

“What’s wrong?” we asked. “Doesn’t that implementation beau-

tifully express the essence of the quick-sort algorithm?”
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“Yes and no,” replied the professor. “It certainly gets at how the

sorting happens, but it doesn’t shed light on the ‘quick’ aspect.

Consider the following imperative formulation [5, 8].”

def Sort(A) :

Sort3(A, 0, len(A) − 1)

def Sort3(A,p, r ) :

if p < r :
q ← Partition(A,p, r )
Sort3(A,p,q − 1)
Sort3(A,q + 1, r )

“Notice that partitioning happens in a single pass, that there

is no work involved in combining the subsequences, and that the

second recursive call is in tail position
1
. That’s why the imperative

version is fast. It’s not even clear that the Haskell formulation is

faster than merge-sort.”

2 COMPARISON TO MERGE-SORT
“We’ve already written merge-sort in Haskell:”

mergesort :: Ord α ⇒ [α]→ [α]
mergesort [] = []

mergesort [x] = [x]
mergesort xs =

let (half1, half2) = split xs
in merge (mergesort half1) (mergesort half2)

split :: [α]→ ([α], [α])
split xs = splita xs [] []

splita :: [α]→ [α]→ [α]→ ([α], [α])
splita [] e o = (e,o)
splita (x : xs ) e o = splita xs o (x : e )

merge :: Ord α ⇒ [α]→ [α]→ [α]
merge [] ys = ys
merge xs [] = xs
merge (x : xs ) (y : ys )
| x < y = x : (merge xs (y : ys ))
| x > y = y : (merge (x : xs ) ys )
| otherwise = x : y : (merge xs ys )

“We used GHC version 8.0.1 with packages from Stackage re-

solver lts-7.3. A 2-core i386 Ubuntu 16.04 VM with 4 GB of memory

was used as the underlying machine. The criterion benchmarking

1
Of course, tail-recursion does not necessarily imply a speed improvement; it only

entails a space improvement.
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suite was used to capture all result data. We found that the quick-

sort implementation is about 1.45 times faster than the merge-sort

implementation.” (In the comparison, we call the original version

of quick-sort quicksort1. See Figure 1.)
“OK,” replied the professor. “But it’s not that much faster. Quick-

sort should be faster than that.”

3 IMPROVING PARTITION
“Improving the partition phase by reducing the number of passes is

not hard. We’ve written the following one-pass function.”

partition :: Ord α ⇒ α → [α]→ ([α], [α])
partition pivot lst =

let part [] leq дt = (leq,дt )
part (x : xs ) leq дt | x > pivot = part xs leq (x : дt )
part (x : xs ) leq дt = part xs (x : leq) дt

in part lst [] []
“Using it instead of the list comprehensions yields a performance

increase. The new version is about 1.67 times faster than the original

version, and it is about 2.44 times faster than merge-sort.” (We call

this version of quick-sort quicksort2. See Figure 1.)
“Fine,” commented the professor. “But it will be impossible for

you to eliminate all the work involved when combining the results.”

4 IMPROVING COMBINING
“We can completely eliminate the linear-time list append operations

(++),” we replied.

“The very nature of functional programming requires that you

assemble the results returned. If you are not using append, then

surely you are using some other similar operation.”

“It’s true that we cannot eliminate all work. We use a single

constant-time cons (:) operation.”

“Is that all?” The professor was surprised. “That’s a big improve-

ment. How can you get away with only that?”

“We make use of an accumulation parameter [6] that implicitly

appends. Here is the equation for the invariant.”

qsAccum ℓ a = (quicksort ℓ) ++a
“The base case is then simple calculation [3].”

qsAccum [] a = (quicksort []) ++a = a

“The recursive case is not too bad either.”

qsAccum (p : xs ) a =

(quicksort (p : xs )) ++a =

(quicksort leq) ++ ([p] ++ ((quicksort дt ) ++a)) =

(quicksort leq) ++ (p : (qsAccum дt a)) =

qsAccum leq (p : (qsAccum дt a))

where (leq,дt ) = partition p xs

“Putting it all together, we get the following alternative func-

tional quick-sort formulation [2, 4, 11, 12].”

quicksort3 :: Ord α ⇒ [α]→ [α]
quicksort3 lst =

let qsAccum [] a = a
qsAccum (p : xs ) a =

let (leq,дt ) = partition p xs
in qsAccum leq (p : (qsAccum дt a))

in qsAccum lst []

“Further, this version does, in fact, perform significantly better.

It is about 1.64 times faster than the previous version, it is about

2.75 times faster than the original version, and it is about 4.01 times

faster than merge-sort.” (See Figure 1.)

5 CONCLUSION
“I like it,” commented the professor.

“It’s still purely functional, but the final version does partitioning

in a single pass, the work for combining the subsequences involves

only a small constant, and one of the recursive calls is in tail position.

Further, the graph clearly shows how much faster it is than merge-

sort.

“Now that I see the derivation, it is obvious. But I had assumed

that it wasn’t possible since I’ve seen so many texts [1, 6, 7, 9, 10, 13]

that have only the initial formulation of quick-sort. Perhaps the

authors of those texts consider it a small leap, but why not publicize

the good news?! I hope that in the future authors will include both

formulations.”
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Figure 1: Sorting performance graph
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